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Abstract. The Wannier–Stark effect in electrified tight-binding systems is investigated, via the
recursive Green-function technique, which involves repeated use of the Dyson equation. Green
functions for finite, semi-infinite and infinite systems are generated in the site representation
in the form of continued fractions, which are then expressed analytically as ratios of Bessel
functions. The local densities of states at the surface and in the bulk are presented and their
dependence on the applied field discussed.

1. Introduction

Zener’s pioneering work on dielectric breakdown [1] provided the first glimpse into the
challenging world of electrified solids. However, more than a quarter of a century had
to elapse before the notion of theStark ladderwas proposed by Wannier [2] in 1960.
The ensuing controversy over the existence ofWannier–Stark ladders(WSL) in multi-band
structures was reviewed and discussed in some detail [3].

The tight-binding (TB) approximation [4] has been widely used to treat WSLs in one-
and two-band systems, since it reflects the salient physical aspects of real crystals. More
recently, a perturbative investigation of WSLs in infinite diatomic crystals was undertaken
by Zhao [5], who found that, in the two-band energy spectrum, the WSLs were interspaced.
For finite crystals, he also found that the interband matrix elements were non-zero [6].

Optical absorption in electrifiedδ-doped semiconductors was examined by Ahn [7].
Solving the Schr̈odinger equation for a V-shapedquantum well(QW) in an electric field, he
predicted wide-range tuning of intersubband absorption by controlling planar doping, and
also the presence of red rather than blue shifts associated with electro-adsorption in ordinary
QWs. In a comparative study, Anwar and Jahan [8] performed a self-consistent calculation
of the density of states of double-barrier QW structures in magnetic and electric fields,
and described the energy redistribution and a phase-breaking mechanism. An electrified
multi-band QW, in the form of a finiteKronig–Penney(KP) structure, was used by Vrubel
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and Borzdov [9] in their treatment of the gradual transition from thequantum confined
Stark effect(QCSE) to the WS quantization. Stark localization and mixing phenomena
between different WSLs in coupled QWs were reported by Sariet al [10], who found
that at intermediate WSL values a certain degree of carrier wavefunction delocalization
exists, while at large values the WSL states become localized inside individual QWs and a
combined band structure occurs.

Experimentally, Cohenet al [11] investigated the optical properties of a narrow-band
GaAs/Alx Ga1−xAs superlatticeand observed a modified WSL with both positive and
negative orders appearing above the zero-order transition. QCSE in InGaAs/GaAs QWs
under high electric fields was studied by Kavaliauskaset al [12] using photocurrent and
electroreflectance spectroscopies. Evidence of exciton quenching and carrier tunnelling
out of the QWs was obtained, while coupling between quasi-bound and continuum states
resulted in an absorption increase below the barrier band gap.

Over the years, a large literature has accumulated on the WSL effect, so it is somewhat
surprising to find that the number of papers devoted to theGreen function(GF) formulation
of the problem appears to be rather sparse. In a series of papers, Lukes and his co-
workers [13] developed a time-independent method of calculating the single-particle GF, in
terms of the corresponding Feynman propagator [14], for aδ-potential in a uniform electric
field, which enabled exact expressions to be derived formally for the density of states and
energy levels of an electrifiedDirac-delta combpotential. Moyer [15], in his GF treatment,
invoked first-order perturbation theory to describe the motion of an electron in an infinite,
electrified KP lattice. Recently, Dolcheret al [16] reported a real-space GF numerical
analysis of WSLs based on a modifiedLanczos iterative procedure, which was applied to
one-dimensional, one- and two-band TB systems. Meanwhile, the GF technique in the site
representation was employed by Gvozdikov [17] to discuss the analogy between theLandau
spectrumof a Bloch electron in a two-dimensional anisotropic lattice and the WSL.

In the present article, we take advantage of the recent advances made in TBGF
methodology. Specifically, we exploit thecontinued fraction(CF) aspect of the recursion
method [18] and develop an analytical GF on anatom-by-atombasis, in a similar fashion
to thecausal-surfaceGF approach of Pendryet al [19]. Thus, the method may be regarded
as a mathematical means of crystal growth.

2. Methodology

Consider a monatomic chain of(N + 1) atoms, numberedn ∈ (0, N), whose site (bond)
energy isα(β). Let the gradient of the imposed electric field beγ , so that0 = γ a is the
potential energy of the field,a being the chain atomic spacing. Assuming that the field
perturbs the site energy of the atomn by an amountn0, then, within the TB approximation,
the Schr̈odinger equation takes the form of theBesselfinite-difference equation [4]

Zncn = cn+1+ cn−1 (1)

where, indimensionless reduced notation,

Zn = 2(X − nF) X = (E − α)/2β F = 0/2β. (2)

We now proceed toconstruct the GF of the chain-field system from itsatomic
constituentsby means of the successive use of theDyson equation[20]. Starting with
the zero-atomend, we build the chain atom-by-atom up to then-atom. Concomitantly, we
begin from theN -atomend and build atom-by-atom to the(n+ 1)-atom. Finally, we join
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Figure 1. Diagrammatic representation of Green-function propagators along atomic chain of
site (bond) energyα (β), with αn = α + n0 at siten in field 0.

the two chains, by means of thebond-projection operator

V = β (|n〉〈n+ 1| + |n+ 1〉〈n|) . (3)

At the 0-atomend, we have initially twoisolatedatoms (figure 1), whose Greenian is

G0 = (|0〉〈0| + |1〉〈1|) (E − α)−1. (4)

On forming theβ-bond between the atoms 0 and 1, and applying the fieldF (figure 1), the
Dyson equation

G1 = G0+G0V1G1 (5)

givesG1 in terms ofG0 and the perturbation potential

V1 = β (|0〉〈1| + |1〉〈0|)+ 0|1〉〈1|. (6)

Inserting (6) into (5), and performing some algebra, leads to the Greenian matrix element
at the first atom, viz,

G1(1) =
[
G0(1)

−1− 0 − β2G0(0)
]−1

(7)

whereGm(m) ≡ Gm(m,m). Following this same recipe for atom 2, we arrive at

G2(2) =
{
G1(2)

−1− 20 − β2[G0(1)
−1− 0 − β2G0(0)]

−1
}−1

. (8)

Since

Gm−1(m)
−1 = (E − α) ∀ m 6= 0 (9)

by (4), mathematical induction leads to theCF form [21]

βGn(n) = 1

Zn −
1

Zn−1 −
1

Zn−2 − · · ·
1

Z1− Z−1
0

(10)

for then-site GF. Similarly, starting at theN -atomend, and working to theleft, we obtain
the CF

βGn+1(n+ 1) = 1

Zn+1 −
1

Zn+2 − · · ·
1

ZN−1− Z−1
N

(11)
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for the (n+ 1)-site CF.
At this juncture, we connect the above two chains via (3) and (5), where

G0 = Gn +Gn+1. (12)

Using the general form of (4), in conjunction with (3), (5) and (12), we arrive at

βG(n) = [β−1Gn(n)
−1− βGn+1(n+ 1)

]−1
. (13)

Inserting (10) and (11) into (13), we have

βGN(n) =
( 1

Zn −
1

Zn−1 − · · ·
1

Z1− Z−1
0

)−1

−
(

1

Zn+1 −
1

Zn+2 − · · ·
1

ZN−1− Z−1
N

)]−1

(14)

which gives thediagonal elements of the Greenian matrix for thefinite chain (0, N).
Proceeding further, (5) and (6) enable the general expression for theoff-diagonal terms
to be derived, i.e.

βGn(0, n) =
n∏

m=0

βGm(m). (15)

Rewriting (1) as the 3-termrecursion relation

cn = bncn−1+ ancn−2 an 6= 0 ∀ n (16)

then, if {cn}∞n=1 is a minimal solution set of (16), a second, linearly independent,dominant
set,{c′n}∞n=1, will also exist. On choosing the minimal solution set, so that

lim
n→∞

(
cn

c′n

)
→ 0 (17)

Pincherle’s theorem[21] states that the CF
∞

K
m=1

(am; bm) = − c0

c−1
(18)

where
∞

K
m=1

(am; bm) = a1

b1 +
a2

b2 + · · · (19)

For afinite chain ofN atoms, (19) becomes theN -approximant
N

K
m=1

(am; bm) = a1

b1 +
a2

b2 + · · ·
aN

bN
(20)

which may be written as
N

K
m=1

(am; bm) = c′0cN − c0c
′
N

−c′−1cN + c−1c
′
N

. (21)

Note, in the limit asN →∞, (21) reduces to (18) via (17). A comparison of (16) and (1)
shows that

am = −1 bm = Zm−1 (22)
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while the Bessel-function(BF) form of (1) means that the minimal (dominant) solution is
the BF of the first (second) kind. Thus,

cn = Jν+n(x)
c′n = Yν+n(x)

(23)

where

ν = xX x = −F−1. (24)

In view of (21) and (23), evaluating (14) at then = 0 site yields [22]

βGN(0) = −
N

K
m=0

(−1;Zm) = − Jν+N(x)Yν(x)− Jν(x)Yν+N(x)
Jν−1(x)Yν+N(x)− Jν+N(x)Yν−1(x)

(25)

for a finite chain. In the limit ofN →∞, (25) reduces to

βG∞(0) = −
∞

K
m=0

(−1;Zm) = Jν(x)

Jν−1(x)
(26)

via (18) and (23), for asemi-infinitechain.
Turning to theinfinite chain, for which(0, N)→ (−∞,∞) in (14), we find

βG∞(n) =
[(

1

Zn −
1

Zn−1 − · · ·
1

Z−N − · · ·
)−1

−
(

1

Zn+1 −
1

Zn+2 − · · ·
1

ZN − · · ·
)]−1

. (27)

In the zero-fieldsituation,Zn = Z0 = 2X by (2), whence, (27) becomes

βG∞(n) =
[(

1

Z0 −
1

Z0 − · · ·
)−1

−
(

1

Z0 −
1

Z0 − · · ·
)]−1

(28)

or

βG∞(n) = (t−1− t)−1 (29)

where

t = 1

Z0 −
1

Z0 − · · · =
1

Z0− t (30)

so that

t2− 2Xt + 1= 0 (31)

whose roots are given by

t± = X ± (X2− 1)1/2 t+t− = 1. (32)

With the aid of (32), substituting (30) into (29) leads to

βG∞(n) = − [2i(1−X2)1/2
]−1

(33)

as required for theF = 0 case [20]. Whenn = 0 in (27), we obtain

βG∞(0) =
[(

1

Z0 −
1

Z−1 − · · ·
1

Z−N − · · ·
)−1

−
(

1

Z1 −
1

Z2 − · · ·
1

ZN − · · ·
)]−1

(34)
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which by (26) can be written as

βG∞(0) = − Jν(x)J−ν(x)
Jν+1(x)J−ν(x)+ Jν(x)J−ν−1(x)

. (35)

However, the denominator in (35) is theWronskian[22]

W [Jν(x), J−ν(x)] = −2 sinνπ/πx (36)

so (35) reads

βG∞(0) = πxJν(x)J−ν(x)
2 sinνπ

. (37)

3. Density of states

Having found the GFs for the three cases in question, we can now obtain theirlocal density
of states(LDOS) at the siten via the usual formula [20]

ρn(X) = π−1ImG(n;X). (38)

SinceG(n;X) is real valued everywhere, only at the reduced eigenenergies,X = Xk, will
the imaginary component be admitted, theXk-values being provided by thepoles of the
GF. Invoking thetheory of residues[23], we arrive at

ImG(n;Xk) = π/(β
[
3(Xk)

−1
]′
) (39)

where the prime denotes differentiation with respect toX (i.e. order ν by (24)), and
3(X) = βReG(n;X). Using (39), we can express (38) as

ρn(X) =
∑
k

I nk (Xk)δ(X −Xk)/(2β) (40)

where

I nk (Xk) = 2
{
[3(Xk)

−1]′
}−1

(41)

is theintensity energy distributionat the atomn, which can also be interpreted as the electron
occupation numberof the statek. We are now in a position to address the LDOS for the
above cases separately.

3.1. Finite chain

The plots of the LDOS at then = 0 site of a 100-atom chain are presented in figure 2
for the various fields indicated. The intensities,I 0

k (Xk), in (41) were obtained by using the
exact rational polynomial form of (25), which can be derived from the Wronskian equations
for both numerator and denominator, where the reduced energies,Xk, are provided by the
poles of (25), i.e. the solutions of

Jνk−1(x)Yνk+N(x)− Jνk+N(x)Yνk−1(x) = 0. (42)

Figure 2(a) depicts thediscretizedform of the familiar semi-elliptic LDOS for the zero-
field case [20]. On applying the small fieldF = 0.005, the band picture of figure 2(b)
arises, in which the most striking feature is the appearance of thelinear-ramp WS-region
of negative slope covering the lower quarter of the band. In addition, the band is rigidly
shifted slightly to higher energies, the intensities decaying exponentially beyond the upper-
band edge atX = 1. Note also the redistribution of theXk-values compared with those in
figure 2(a). Increasing the field toF = 0.01, the WS-region in figure 2(c) now extends over
all the lower half of the band, and about half its intensities exceed the maximum of those



Green-function study of Wannier–Stark effect 6377

0

0.01

0.02

0.03

−2 −1 0 1 2

210
Xk

-1-2

I
0

k
(Xk)0.03

(a)

F = 0

0

0.01

0.02

0.03

−2 −1 0 1 2

210 Xk-1

F = 0:005

-2

I
0

k
(Xk)0.03(b)

0

0.01

0.02

0.03

−2 −1 0 1 2

210 Xk-1

F = 0:01

-2

I
0

k
(Xk)0.03(c)

0

0.01

0.02

0.03

0.04

−2 −1 0 1 2

210 Xk-1

F = 0:02

-2

I
0

k
(Xk)0.04(d)

Figure 2. LDOS atn = 0 site of 100 atom chain. As field increases, semi-elliptical shape is
dominated by linear field. Field strengths are as indicated.

in the semi-elliptic portion. Doubling the field toF = 0.02, the WS-regioncompletely
supersedes the semi-elliptic one, as in figure 2(d), and is again accompanied by the rigid
shift to higherXk-values and the exponential tailing aboveX = 1. Moreover, theI 0

k (Xk)

values are markedly larger than those in theF = 0 situation in figure 2(a), particularly in
the lower half of the WS-band. Note here, and elsewhere, that

∑
k I

n
k (Xk) = 1 regulates the

heights of the intensity spikes. In the case ofF negative, the corresponding LDOS plots
are those of figure 2, reflected in theXk = 0 vertical axis.

3.2. Semi-infinite chain

Here, we use (26) in (39) and (41), withn = 0, to obtain

I 0
k (Xk) = 2x−1Jνk (x)[J

′
νk−1(x)]

−1 (43)

theXk-values being the solutions of

Jνk−1(x) = 0 (44)

i.e. the poles of (26).
In contrast to the finite and infinite chains’ LDOS plots at then = 0 site, here we

are concerned with the LDOS at anumberof sites in the chain, when the field isfixed at
F = 0.02. Starting at the end site,n = 0, we immediately see that figure 3(a) essentially
replicates that of figure 2(d), for this site of the finite chain under the same field. Moving to
the next site atn = 1, figure 3(b) shows that a drastic change has occurred in the LDOS, at
this first subsurfaceatom. The distinct features are the extremely high spike at the lower-
band edge followed by a steep decline toI 0

k (0) = 0 over the bottom half of the WS-band,
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Figure 3. Transition from surface (n = 0) to bulk (n = 10) LDOS of semi-infinite chain subject
to a linear applied field ofF = 0.02. Site positions are as shown.

while in the top half we witness the emergence of the firstbulk contribution in the form of
a discretized hump. Penetrating the chain further, to then = 5 site, figure 3(c) displays a
series of spike clusters of Gaussian-like(GL) shape, except at the lower-band edge, where
the dominant spike is again present. We also notice that the envelope through the GL peak
maxima takes on the familiar U-shape of a bulk LDOS. TheI10

k (Xk) plot of figure 4(d) is
for the bulk site atn = 10. As in figure 4(c), we find a series of GL peaks, each separated
by a node (i.e. I 10

k (Xk) = 0). The number of nodes (and peaks) increases withn. Note
that the bulk character of this LDOS is reflected in the disappearance of the dominant spike
at the lower-band edge, which is connected with thesurface state[20] associated with the
end atom atn = 0. The U-shape envelope is, of course, still retained and the band tailing
at the upper-band edge has become more pronounced, in conjunction with the rigid shift of
the WS-band, asn increases.

3.3. Infinite chain

From (37) and (41), we find that

I 0
k (Xk) = sec(νkπ)Jνk (x)J−νk (x) (45)

the poles of (37) providing theXk-values, viz,

sinνkπ = 0 (46)

i.e.

Xk = kF k = 0,±1,±2, . . . (47)
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Figure 4. Occupation number of states for infinite chain. Continuous field transition from
discretized U-shape of zero-field to the localized peak forF > 1 occurs by combining both U
and GL features into multiple Stark ladders. Field strengths are as indicated.

by (24). Thusνk = −k, and so

sec(νkπ) = (−1)k = (−1)νk . (48)

SinceJ−ν(x) = (−1)νJν(x) [22], it follows from (23) thatI 0
k (Xk) in (45) varies as the

probability, |c0
k |2, giving the link to thek-state occupation number at the zero atom. Note,

(47) defines atrue WSL, in contrast to thequasi-WSLs given by the BF conditions in (42)
and (44).

The LDOS are shown in figure 4 for theF -values indicated. The low-field(F = 0.005)
case of figure 4(a) has the U-shape appearance of theF = 0 situation [20], and thediscrete
detailsare reminiscent of the0 = 0.01 plot of theground-state profileobtained numerically
by Dolcher et al [16], including the band tailing atboth band edges. ForF = 0.02, in
figure 4(b), thefine structureof the discrete details is resolved, showing the intensity spikes
are again clustered into energy regions, which we identify as the break-up of thesingle
WS-band into themultiple mini-WS-bandsand were suggested by Moyer [15] as a means of
approaching the zero-field limit in a proper manner. Further increase of the field toF = 0.1
results in figure 4(c), where the heights of the intensity spikes are greatly diminished and
their separation and band tailing greatly enhanced, making the characteristic U-shape barely
discernible. Taking the field toF = 1.0, the WS-band structure is reduced to that in
figure 4(d), whose few spikes form asingle GL distribution about the central dominant
spike atXk = 0, the U-shape being completely destroyed. Conversely, the single GL peak
can be regarded as thebasic unitfrom which the other WS spectra are generated.
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Figure 5. (a) WS-band showing localization lengthL and wavefunction behaviour. (b)
Rectangular hyperbolaeFL = ±2 bounding shaded region in which(F, L) values give rise
to band state.

Let us now address the question of thenumberof states in the WS-band at a given field
strength. Thetilted band pictureof the WSL (47) is shown in figure 5(a), whereXk vs. n
is drawn. Theupper(lower) band edge is the lineXk = n+1 (Xk = n−1). Between these
lines, the vertical (horizontal) bandwidth is 2 (L), L being the so-calledlocalization length,
over (beyond) which the BF is oscillatory (damped exponentially). From the geometry of
figure 5(a), we see that the field gradientF = ±2/L, or |FL| = 2. Thus, for a state to be
in the band, therectangular hyperbolic condition(figure 5b)

|FL| 6 2 (49)

must be satisfied. Since, in the one-electron approximation, each chain atom contributes one
state, the actual number of states in the WS-band corresponds to the number over whichL

(= 2F−1) extends. Hence, whenF = 1, L = 2 and the number of states supported by the
WS-band atn = 0 is three, as in figure 4(d), where the band-tailing states beyond the edges
areneglected. ReducingF to 0.1 (figure 4c), we find21 statesin the band, corresponding
to L = 20. Whence, in general, the number of states in the WS-band is

N = 2
[
L/2]

]+ 1= 2
[
1/|F |]+ 1= 2[|x|] + 1 (50)

where the square brackets indicate the integer part of the argument.
Finally, we should mention that the methodology described herein has been applied to

the study of the WS effect on surface states [24] and chemisorption [25].
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4. Conclusion

The effect of an applied electric field on TB systems has been investigated by means of
the RGF approach, which provided access to the LDOS. By invoking Pincherle’s theorem,
the continued-fraction form of the RGF was expressedanalytically as the ratio of Bessel
functions, in contrast to the previous numerical treatments [16]. LDOS results were
presented for finite, semi-infinite and infinite TB systems, for various field strengths.

The poles of the RGFs provided the energy-level values, at which the LDOS was
evaluated, via the imaginary part of the RGF. The presence of the energy Diracδ-function
in the LDOS expression gives rise to thediscretenature of the LDOS, so the spectrum shows
none of the field-induced broadening usually associated with such interactive systems. This
outcome is perhaps not too surprising, in view of the fact that the applied field destroys
the translational symmetry of the crystal, so that each atom is distinguished by a different
site energy. Thus, the system has ostensibly become a linear array ofimpurity atoms, each
supporting a localized state with a discrete energy level. It should be pointed out, however,
that the TB approach neglects the scattering states of the atoms which, if included, would
lead to asmooth(rather than discrete) spectrum with eigenstates decaying algebraically in
the region of large, negative electronic potential energy.

With increasing field strength, the LDOS envelope at theend atomexhibits a competition
between the familiar semi-elliptic shape and the linear-ramp WS shape, accompanied by
a redistribution of the reduced-energy levels. Moving to an atomic siteinside the chain
reveals the emergence of an oscillatory behaviour in the LDOS envelope, with the number
of nodes corresponding roughly to the distance from the end atom. At an atomic site in the
bulk, where the energy levels form a regular WSL, the oscillatory shape breaks-up into a
number of WS mini-bands, with the familiar U-shape appearance at low fields and just a
few dominant spikes at high fields. In particular, the seemingly irregular discrete details of
the LDOS in the bulk are reminiscent of the numerical findings of Dolcheret al [16].

In the present one-band TB treatment, degeneracy does not arise, because the system in
question is considered to beisolated. However, on connecting it to the outside world via
leads, the levels in the applied-field region would become degenerate with those in the leads,
thus providing a channel for electron transport. In the case of electrified semiconductors,
the levels in the valence and conduction bands are degenerate, and charge transfer across
the band gap occurs by Zener tunnelling.

The methodology formulated here can be extended to two- and three-dimensional
systems, in the manner of Pendryet al [19]. It is also applicable to electrified superlattices,
and should be a useful aid in designing atomic-switching devices, which are currently being
fabricated by scanning-tunnelling microscopes [26].
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